趣趣阁 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

这番话从任何的学子的口中说出来,都多少有些不知好歹。

但这可是叶秋!

当他沉稳的话语配上一张清俊的脸庞,任何人都不会怀疑说这些话的真实性。

康德和拉波波特二人对视一眼,谁都没有说话,最后长长的叹了一口气,无不惋惜。

两个数学大拿心中很清楚,叶秋以后的前途不可限量,要是能够拜到他们的门下,那将会是一件天大的好事情。

但是活到了他们这种岁数,对于得失看得很开的,不想要拜师了,他们也不再强求。

陆晚晚和靳可竹、安娜三个女生在大礼堂里面呆着无趣,相约去逛街。

整个大礼堂里面就只剩下康德、叶秋、拉波波特、舒尔茨四个人。

四个人围在了桌子的旁边,有时候会聊着自己生活中遇到的琐事,有时候会聊着在数学中碰到等难题。

虽然叶秋和拉波波特、舒尔茨都是第一次见面,但是数学为他们搭建了一道十分美好的桥梁,让他们一见如故。

话语正酣,舒尔茨适时的提出来了一个问题。

“两位老师有一个问题,困惑了我很长时间了,叶秋兄弟你也帮忙参考一下。”

三个人齐刷刷的看向舒尔茨。

舒尔茨咳嗽了一声,便缓缓说道。

“最近我正在研究群论产生的历史,群论产生的历史之中有两个相对一样的置换群,但是是否能够出现一个n与n的质数相同,而后把置换群相互隔离?”

这个问题很是高深。

如果不懂得数学研究的人根本就不知道这个话到底在说什么。

叶秋听闻此言,闭上眼睛深深的陷入了沉思。

要弄明白舒尔茨的这个问题到底是什么意思,首先必须得明白群论产生的历史。

群论是法国数学家伽罗瓦的发明。

他用该理论,具体来说是伽罗瓦群解决了五次方程问题。

在此之前柯西阿贝尔等人也对群论作出了贡献,但是贡献有限,不能支撑后来的研究

最先产生的是n个文字的一些置换所构成的置换群,它是在研究当时代数学的中心问题即五次以上的一元多项式方程是否可用根式求解的问题时,经由j-l.拉格朗日、p.鲁菲尼、n.h.阿贝尔和e.伽罗瓦引入和发展,并有成效地用它彻底解决了这个中心问题。

某个数域上一元n次多项式方程,它的根之间的某些置换所构成的置换群被定义作该方程的伽罗瓦群。

1832年伽罗瓦证明了一元n次多项式方程能用根式求解的一个充分必要条件是该方程的伽罗瓦群为“可解群”,由于一般的一元n次方程的伽罗瓦群是n个文字的对称群sn,而当n≥5时sn不是可解群,所以一般的五次以上一元方程不能用根式求解。

伽罗瓦还引入了置换群的同构、正规子群等重要概念。应当指出,a-l.柯西早在1815年就发表了有关置换群的第一篇论文,并在此后的二十年间对置换群又做了很多工作。

至于置换群的系统知识和伽罗瓦用于方程理论的研究,由于伽罗瓦的原稿是他在决斗致死前夕赶写成的,直到后来才在c.若尔当的名着“置换和代数方程专论”中得到很好的介绍和进一步的发展。置换群是最终产生和形成抽象群的第一个最主要的来源。

在数论中,拉格朗日和c.f.高斯研究过由具有同一判别式d的二次型类,即f=ax^22bxycy^2,其中a、b、c为整数,x、y取整数值,且d=b^2-ac为固定值,对于两个型的"复合"乘法,构成一个交换群。

w.r.戴德金于1858年和l.克罗内克于1870年在其代数数论的研究中也引进了有限交换群。

以至有限群群论产生的历史是一个比较高深的数学问题。

数学家关心的是各元素间的运算关系,也即群的结构,而不管一个群的元素的具体含义是什么。举一个具体的例子,根据凯莱定理,任何一个群都同构于由群的元素组成的置换群。

于是,特别是对研究有限群来说,研究置换群就是一个重要的问题了。

如果能够彻底的解而开群论之间的运算关系,那么就可以把物理学和力学相结合起来。

通俗点来讲,如果真的能够解开了群论的历史影响,那么可以把力学和热量学相互转换。

就比如。

当一艘火箭发射在太空之中,本来又经历几万光年的时间才会抵达,抵达另外一颗星球。

但是只要进行力的互换,可能一秒钟或是一分钟就能够抵达下一个星球。

这是对人类利益是产生的一个极大的影响,如果真的能够不彻底的破解开立群论的历史问题,那么将是人类科技进步的一大步。

而这也就是目前舒尔茨所研究的问题。

叶秋咳嗽了一声,缓缓的说出自己的见解。

“要研究群论产生的历史影响,其实最关键的就是要懂得各个群论之间的相互力量转换,就比如a群论和b群论之间是否可以进行转换,但是转换的特定因素是什么?”

“此特定因素又可否在c群论和d群论之间转换?我化了一个特定的关系,是在此特定的关系是中a群论和b群论可以相互进行转换……”

不愧是天才,两个人聊天的时候毫无压力。

话没有说清楚,就能够明白对方的心意,舒尔茨直接把自己的转换故事写在了草稿纸上面,递给叶秋。

叶秋看着面前的转换公式长呼一口气。

这个这个转换公式十分复杂,他跳过了人们原有的逻辑,而是从一种杂乱无计的无章的逻辑入手。

叶秋不由得发出疑问。

“这个转换的公式并没有任何的逻辑,为什么可以成为a群论和b群论之间的支撑呢?”

“正是因为这个公式是杂毫无逻辑,所以才可以成为转换,从某种意义上来讲a群论和b群论之间本来就没有任何的关系和意义,我们如果非要找出一个特定的逻辑公式的话是找不出来的,还不如根据两个群论的特性找出一个杂乱无章的公式呢。”

舒尔茨本来就只是在发表自己的看法,可是这句话却给了自己极大的启发呢。

这样的公式转换是不是也可以运用在np完全问题中呢?

趣趣阁推荐阅读:炮灰在快穿游戏里撩疯了甜甜甜!我的29岁病娇财阀老婆分手后,一首素颜引发全网共鸣最强巅峰狂少官道:风起云涌诸天万界,路人甲直播算卦:团宠真千金竟是玄学大佬灵识之作极品闲医欲爱重生:总裁的命定前妻极品小村民奥特曼之未来食物链顶端的猛兽乡里人鲜肉殿下:再贱萌妃致命婚姻:遭遇冷血大亨!草根选调生被离婚穷奶爸,带娃从美食店开始第一夫人:我家先生超凶的化工研究院锁定陆海夫妇这对CP盛世豪恋:权少的心尖独宠离婚后成了满级战神三好大魔王[穿越X重生]狗血那么近站住你马甲掉了非宠不可:傲娇医妻别反抗无敌神婿男神我可以住你家吗都市:守护龙脉十年,下山即无敌身为男人的我女团出道,我火爆了重生之苦尽甘来无敌最俊朗新书被虐后冷心娇妻重生了萌娃带我去穿越抖音神豪:直播打赏一万亿老刑警重生,谁敢不服?枭宠毒妃:第一小狂妻海贼:无敌从僵尸军团开始替嫁后天降巨富老公都市之妙手圣医帝少宠上瘾:老公,别心急爱情公寓之万界最强队伍我的七个姐姐绝色倾城帝国强宠:娇妻已预定一胎双宝:妈咪跑不掉老婆别跑:总裁的代嫁妻签到:直播科技差点被曝光修真妖孽混都市战神探束手就擎,总裁老公请绕道!
趣趣阁搜藏榜:直播算卦:团宠真千金竟是玄学大佬灵识之作极品闲医欲爱重生:总裁的命定前妻极品小村民奥特曼之未来食物链顶端的猛兽乡里人鲜肉殿下:再贱萌妃致命婚姻:遭遇冷血大亨!草根选调生被离婚穷奶爸,带娃从美食店开始第一夫人:我家先生超凶的化工研究院锁定陆海夫妇这对CP盛世豪恋:权少的心尖独宠离婚后成了满级战神三好大魔王[穿越X重生]狗血那么近站住你马甲掉了非宠不可:傲娇医妻别反抗无敌神婿男神我可以住你家吗都市:守护龙脉十年,下山即无敌身为男人的我女团出道,我火爆了重生之苦尽甘来无敌最俊朗新书被虐后冷心娇妻重生了萌娃带我去穿越抖音神豪:直播打赏一万亿老刑警重生,谁敢不服?枭宠毒妃:第一小狂妻海贼:无敌从僵尸军团开始替嫁后天降巨富老公都市之妙手圣医帝少宠上瘾:老公,别心急爱情公寓之万界最强队伍我的七个姐姐绝色倾城帝国强宠:娇妻已预定一胎双宝:妈咪跑不掉老婆别跑:总裁的代嫁妻签到:直播科技差点被曝光修真妖孽混都市战神探束手就擎,总裁老公请绕道!末日降临:以强化称霸穿书八零成了五个大佬的后妈超凡生物体验游戏春满四合院之我是傻柱盛宠毒妃步步成婚,总裁好嚣张
趣趣阁最新小说:开挖掘机累?我光奖金就有十个亿气荡山河官道之医官亨通拿我爆金币?我提退婚你哭什么穿越1980:那年我救女知青无名之都市仙尊刚穿越到修仙界,又死回地球了?重启2006,低调不了一点闪婚姐姐太惊艳,我神魂颠倒青涩有悔灵魂空间春风十里不如你娇颜都市,末世,异界,我乐疯了厨霸天下给毛料开窗,没有人比我更专业追梦的陈一我,骷髅君王,居然被诅咒了!滨湖之家重生之叶氏帝国未婚妻陷害我后,追悔莫及强制爱穿越炒股之收割美帝天眼鉴宝:我的传奇鉴宝人生我的重生,是老天对我的补偿!爱如繁花放手飞翔万古混沌至尊月皇高冷校花竟是我的软萌小女友?都市软饭:八个顶尖女神疯狂倒贴御兽:看着图鉴养御兽官场智斗仕途巅峰:从女书记的秘书开始重生离婚之日:我的计划震撼全球都断绝关系了还求我回家做什么重生之美女太多了,怎么办卡牌:我不是弃神都市太子爷成了天命大反派开局背靠蓝星?一拳一戟镇万族重生:从教父到美利坚话事人囚笼里的休者诡异降临:这个人类超级有钱!为妻子复仇的丈夫炒股炒成大股东?被套就举牌?那一刻,蝴蝶飞飞辅助?抱歉,我有禁字诀!男生女相,你们都给我装了定位?上四休三!员工比我还怕公司破产我梦见了高考答案神秘法术之缘穿行诸天,证就至高蜜色诱人