趣趣阁 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

虽说数学悖论大多是一些让人越想越糊涂的逻辑思维游戏,但也有不少悖论来自于实实在在的数学问题。在缺乏现代数学工具的年代,这些反直觉的结论和看似不可调和的矛盾让数学家们百思不得其解,那些最难解决的悖论甚至为数学新分支的开创带来了足够的动机。不太为人熟知的 cramer 悖论就是一个漂亮的例子。

在描述 cramer 悖论之前,让我们先来考虑一个简单的情况。

两条直线交于一点。

反过来,过一点可以做两条不同的直线。

事实上,过一点可以做无数条直线。

确定一条直线需要两个点才够。

一切都很正常。

现在,考虑平面上的两条三次曲线。

由于将两个二元三次方程联立求解,最多可以得到 9 组不同的解,因此两条三次曲线最多有 9 个交点。另外,三次曲线的一般形式为

x^3 + a·x^2·y + b·x·y^2 + c·y^3 + d·x^2 + e·x·y + f·y^2 + g·x + h·y + i = 0

这里面一共有 9 个未知系数。

代入曲线上的 9 组不同的(x, y),我们就能得出 9 个方程,解出这 9 个未知系数,恢复出这个三次曲线的原貌。

也就是说,平面上的 9 个点唯一地确定了一个三次曲线。

这次貌似就出问题了:“两条三次曲线交于 9 个点”和 “ 9 个点唯一地确定一条三次曲线”怎么可能同时成立呢?

既然这 9 个点是两条三次曲线所共有的,那它们究竟会“唯一地”确定出哪条曲线呢?

在没有线性代数的年代,这是一个令人匪夷所思的问题。

cramer 和 Euler 是同一时代的两位大数学家。

他们曾就代数曲线问题有过不少信件交流。

上面这个问题就是 1744 年 9 月 30 日 cramer 在给 Euler 的信中提出来的。

在信中, cramer 摆出了两个稍作思考便能看出显然成立的事实:一条三次曲线能用 9 个点唯一地确定下来,两条三次曲线可能产生出 9 个交点。

cramer 向 Euler 提出了自己的疑问:这两个结论怎么可能同时成立呢?

Euler 心中的疑问不比 cramer 的少。

接下来的几年里,他都在寻找这个矛盾产生的源头。

1748 年, Euler 发表了一篇题为 Sur une contradiction apparente dans la doctrine des lignes courbes (关于曲线规律中的一个明显的矛盾)的文章,尝试着解决这一难题。

正如大家所想,矛盾的源头就是, 9 个点不见得能唯一地确定出三次曲线的方程,因为不是每个点的位置都能给我们带来足够的信息。

Euler 试图向人们解释这样一件事情:曲线上的 9 个点虽然给出了 9 个不同的方程,但有时它们并不能唯一地解出那 9 个未知数,因为有些方程是废的。

在没有线性代数的年代,解释这件事情并不容易。

Euler 举了一个最简单的例子:方程组

3x ? 2y = 5

4y = 6x ? 10

表面上存在唯一解,但事实上两个方程的本质相同——第一个方程乘以 2 再移项后就直接变成第二个方程了。

换句话说,后一个方程并没有给我们带来新的信息,有它没它都一样。

当然,这只是一个最为简单的例子。

在当时,真正让人大开眼界的则是 Euler 文中给出的三元一次方程组:

2x ? 3y + 5z = 8

3x ? 5y + 7z = 9

x ? y + 3z = 7

这个方程组也没有唯一解,原因就很隐蔽了:后两个方程之和其实是第一个方程的两倍,换句话说第一个方程本来就能由另外两个方程推出来。

因此,整个方程组本质上只有两个不同的方程,它们不足以确定出三个未知数来。

Euler 还给出了一个四元一次方程组的例子,向人们展示了更加复杂的情况。

类似地, 9 个九元一次方程当然也会因为出现重复信息而不存在唯一解,不过具体情况几乎无法预料:很可能方程(1)就是方程(2)和方程(5)的差的多少多少倍,也有可能方程(7)和(9)的差恰是前三个方程的和。

究竟什么叫做一个方程“提供了新的信息”,用什么来衡量一个方程组里的信息量,怎样的方程组才会有唯一解?

Euler 承认,“要想给出一个一般情况下的公式是很困难的”。

此时大家或许能体会到, Euler 提出的这些遗留问题太具启发性了,当时的数学研究者们看到之后必然是浑身血液沸腾。

包括 cramer 在内的数学家们沿着 Euler 的思路继续想下去,一个强大的数学新工具——线性代数——逐渐开始成型。

没错,这个 cramer 正是后来提出线性代数一大基本定理—— cramer 法则——的那个人。

趣趣阁推荐阅读:重生万妖之皇宝可梦,开局孵出灭尽龙豪门少奶奶:谢少的心尖宠妻四重分裂网游:我在无秩序世界飙疯了壹鹿小跑新书崩铁的天才物理学家在线DJ赛尔号巅峰之战民国诡事退休救世主掉到锤四万哪算退休啊强势宠爱:电竞男神是女生不管怎么样我想回去契约到期后我甩了负心汉退婚当天,弃女转身契约魔帝虐杀九州我居然能心想事成篮球梦之挥手之间狂血兵王叶少重返英纳瑞网游之洪荒王者英雄联盟之复刻大师海贼之我是白无常篮坛狂锋之天才在左网游之天命织造师网游:开局SSS天赋,吞噬召唤没有我开不了的团穿越古代:我在运河上做九品闸官纨绔教师灵碑传奇提瓦特战记萌学园之唯你星动稳健修仙,整个修仙界都是我家神职高手抽个名将打天下足坛大师进化录倩女幽魂:逆游岁月的甲鱼网游之超级大法师英雄联盟之正能量全世界OL希望之耀伊利达雷魔影石坚:吾为大帝,当镇世间一切敌赵原柳莎医路青云全文免费阅读大结局[清穿]熙心懿世缘师尊,弟子只想欺师不想灭祖大明朱棣:爹,你咋没死啊?!掌上娇娇支云主教:从1998开始肥水不流外人田身体交换游戏上门女婿的咸鱼生活
趣趣阁搜藏榜:壹鹿小跑新书崩铁的天才物理学家在线DJ赛尔号巅峰之战民国诡事退休救世主掉到锤四万哪算退休啊强势宠爱:电竞男神是女生不管怎么样我想回去契约到期后我甩了负心汉退婚当天,弃女转身契约魔帝虐杀九州我居然能心想事成篮球梦之挥手之间狂血兵王叶少重返英纳瑞网游之洪荒王者英雄联盟之复刻大师海贼之我是白无常篮坛狂锋之天才在左网游之天命织造师网游:开局SSS天赋,吞噬召唤没有我开不了的团穿越古代:我在运河上做九品闸官纨绔教师灵碑传奇提瓦特战记萌学园之唯你星动稳健修仙,整个修仙界都是我家神职高手抽个名将打天下足坛大师进化录倩女幽魂:逆游岁月的甲鱼网游之超级大法师英雄联盟之正能量全世界OL希望之耀伊利达雷魔影石坚:吾为大帝,当镇世间一切敌赵原柳莎医路青云全文免费阅读大结局[清穿]熙心懿世缘师尊,弟子只想欺师不想灭祖大明朱棣:爹,你咋没死啊?!掌上娇娇支云主教:从1998开始肥水不流外人田身体交换游戏上门女婿的咸鱼生活盗墓:镇灵桃运民工宁以初厉凌炀全文免费阅读完整版比绿巨人还猛,你说他打NBA?空间灵泉有点田
趣趣阁最新小说:LOL,开挂的我,针对就有用?你把faker都打抑郁了?穿进恐怖游戏后,我和反派HE了网王之不灭意志提示来自50年后,叫我怎么输?盗笔:被张麒麟暗恋?我是男的!现代高材生的古代传奇每天读百位世界顶级哲学心里学四合院:柱子娶川渝婆娘太阳与我爱恨两难全大玩家:第一纪元网游:开局SSS天赋,吞噬召唤第五人格:寻找感染源刀刀直播间陛下莫怕,将军来也【王俊凯】与你相遇真好四合院:投身万岁军封神长津湖综影视:还是养成香幻世御兽奥特:命运之子斗破苍穹之星辰天命小寡妇翻身,受不了不准叫我气球姐!伊莱克斯亡灵法神残梦遗伤锦绣双影:情牵朝野,盛世梦华录网游:垃圾天赋超神技加书架后,我修为稳步提升山海经之灾厄将至江湖夜雨十年灯之剑胆琴心魔法辞条都市狂龙行天下震惊:我的室友,竟然是巅峰第一网游:我的攻击刀刀斩血百分之十触灵侦探事务所何雨柱重生变聪明博德之门3:从螺壳舰开始新生四合院何雨柱之偷天换日被迫成为敌人的金丝雀NBA:浪子老板,打造紫金十冠恶魔果实,降临现实世界儿童故事三百篇四合院:重生傻柱,我有无敌空间都殿下了!会亿点技能怎么了火影:开局三战,别怪我开点小挂重生:股市大鳄李明重生黛玉清仇录死对头总想让我喜欢他星铁之折翼旅人