趣趣阁 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

欧叶进入答辩会现场,将她的博士论文投影到屏幕上。

“弗拉蒙特教授,努曼伯格教授,汉克斯教授,下午好。”欧叶礼貌的说到,瞟了眼旁听席的沈奇和林登施特劳斯。

主答辩官弗拉蒙特教授是一张扑克脸,他不苟言笑的说到:“欧,这是你的博士研究生第四学期。”

欧叶点点头:“是的。”

弗拉蒙特教授为人严厉,沈奇为欧叶捏了把汗。

不过欧叶入场之后发挥平稳,并没有虚,这是个好兆头。

弗拉蒙特教授:“欧,你的博士论文《耶斯曼诺维奇猜想的证明》,我们三位答辩官已看过,接下来将由你进行3到5分钟的陈述,然后我们会提问。”

欧叶:“好的。”

3到5分钟的陈述?沈奇有些意外,正常情况下博士研究生的开场陈述时间在15-20分钟之间。

林登施特劳斯扭头笑了笑,他的眼神告诉沈奇:我们很宽容,因人而异。

欧叶手持翻页笔,切换她博士论文的PPT

欧叶切到第3页:“这个,卢卡斯序列。”

欧叶在第4页不做停留,直接切到第5页:“这个,卢卡斯偶数,等价。”

PPT页码显示有101页,欧叶平均5秒钟过一页。

三位答辩官并未提出任何异议,就静静的看着欧叶飞快的刷PPT。

Power-Point,这是真正的PPT……沈奇从未见过如此简洁的PPT汇报,而PPT的精髓正是如此:强烈的观点。

制作PPT的要点在于突出每一页的重点,PPT汇报者在有限时间内须用最精炼的语言表达最强烈的观点。

欧叶的PPT表达精炼到极致,101页,她5分钟就陈述完毕,语言表达风格跟平常类似,只说重点不磨叽。

“OK,谢谢你的陈述,欧,接下来进入提问环节。”弗拉蒙特教授率先发问,他说到:“你刚才提到了卢卡斯序列,n(α,β)=α^n-β^n/α-β,其中n为正整数,这个定义没问题,这是前提。那么我要问的是,基于这个定义前提,如何反向求出un(α,β)的本原素除子?”

弗拉蒙特教授这个问题是个陷阱啊……沈奇已将欧叶的打印版论文过了一遍,反向求出un(α,β)的本原素除子是个逻辑陷阱,因为un(α,β)不具备本原素除子。

欧叶神志清醒反应灵敏,她答到:“无法求出。”

弗拉蒙特教授追问:“为什么?”

欧叶切换页,操作翻页笔的激光照射到un(α1,β1)=±un(α2,β2),并同步解释:“它不具备,本原素除子。”

“是吗?你确定?”弗拉蒙特教授继续追问。

“我确定。”欧叶无比坚定。

“下面由努曼伯格教授、汉克斯教授提问。”弗拉蒙特教授不再发问,他低头在答辩记录纸上写写画画。

努曼伯格教授长着一张圆脸,秃顶,笑眯眯像是个白人版的弥勒佛,他问到:“欧,关于引理1,我并不是太明白你取5≤n≤30且n≠6的依据是什么?”

“嗯。”欧叶早有准备,她切换页,这页引人注目的重点是方程(11):(2k+1)^x±(2k(k+1)))^y√-2k(k+1)=±(1±√-2k(k+1))^z

“给定正整数k,无z≥3的正整数解。”欧叶说到。

“OK,我暂时没有问题了。”努曼伯格教授低头记录,应该是在给欧叶打分。

第二个问题一问一答不过一分钟,但旁听的沈奇知道这个问题绝没有看上去那么简单。

如果(x,y,z)是方程(11)的正整数解,根据前提定义可知1+√-2k(k+1)与1-√-2k(k+1)形成卢卡斯偶数。

由方程(11)可得一个新方程,即欧叶论文中的方程(12),可以验证uz(1+√-2k(k+1),1-√-2k(k+1))没有本原素因子。

再由BHV定理可得,不存在z≥3的正整数解(x,y,z),回到前提定义,若使得un(α,β)不具有本原素除子,则n须取5≤n≤30且n≠6。

逻辑上挺绕的,欧叶的回答“给定正整数k,无z≥3的正整数解”属于一锤定音的小结性质,她心中明白这个逻辑,才能用一句话总结由这个逻辑推导出的核心结论。

让欧叶长篇大论的讲出全套推导逻辑,那她得讲一整天。

好在这里是普林斯顿,而且三位答辩官事先研究过欧叶的论文,他们都是着名数学教授,一叶知秋,答辩人一两句关键答辩词就足以让三位答辩官给出分数。

这时由汉克斯教授发言:“我来说几句吧,欧,你证明了不存z≥3,即z要么为1要么为2,。而我基于瑞安原则计算出z可以取1或2,所以我认为你对耶斯曼诺维奇猜想的证明不成立。”

此问一出,欧叶惊呆了:“……”

沈奇惊呆了,瑞安原则什么鬼?

林登施特劳斯教授惊呆了,z必须为2,z只能为2不能取1!欧叶的结论是我确认过的,不会错的!

的条件满足,代入前面的式子,才能证明方程a^x+b^^z仅有整数解(x,y,z)=(2,2,,2),,即耶斯曼诺维奇猜想的完全证明成立。

或1,这个结论如果成立,将推翻欧叶的博士论文,耶斯曼诺维奇猜想依旧未能被完全证明,欧叶现在做的工作,和耶斯曼诺维奇本人几十年前的证明工作没有本质区别。

我努力了两年得来的成果不要被推翻呀!欧叶急了,脸色忽白忽红,她紧握双拳高声辩论:“汉克斯教授,请看我论文的第92页到101页,对于S中的任意(x,y,z)都存在唯一的有理数l满足代数整数环!在方程(22)的两边模2(n+1)得2∣x,再模2n(n+1)+1得4∣x,依此类推,的情况,所以z只能取2!”

欧叶忽然爆发,三位答辩官吓了一跳,汉克斯教授的笔不慎掉落地面。

“这……暴走的小叶子?”沈奇也受到惊吓,他从未见过欧叶如此激动,这大概是欧叶得病之后一口气说的最长的一段话,有理有据有真相,还挺6的。

最快更新阅读,请访问 请收藏本站阅读最新小说!

趣趣阁推荐阅读:最狂龙婿炮灰在快穿游戏里撩疯了甜甜甜!我的29岁病娇财阀老婆分手后,一首素颜引发全网共鸣最强巅峰狂少官道:风起云涌娱乐之快意人生诸天万界,路人甲直播算卦:团宠真千金竟是玄学大佬灵识之作极品闲医欲爱重生:总裁的命定前妻极品小村民奥特曼之未来食物链顶端的猛兽乡里人鲜肉殿下:再贱萌妃致命婚姻:遭遇冷血大亨!草根选调生被离婚穷奶爸,带娃从美食店开始第一夫人:我家先生超凶的化工研究院锁定陆海夫妇这对CP盛世豪恋:权少的心尖独宠离婚后成了满级战神三好大魔王[穿越X重生]狗血那么近站住你马甲掉了坐公交车游遍全中国非宠不可:傲娇医妻别反抗御兽无限红词条,刚出新区碾万族无敌神婿男神我可以住你家吗都市:守护龙脉十年,下山即无敌身为男人的我女团出道,我火爆了六零:饥荒年当伙夫,社员都被馋哭了中式恐怖不行?纸人抬棺送走鹰酱重生之苦尽甘来无敌最俊朗新书被虐后冷心娇妻重生了萌娃带我去穿越抖音神豪:直播打赏一万亿老刑警重生,谁敢不服?枭宠毒妃:第一小狂妻海贼:无敌从僵尸军团开始替嫁后天降巨富老公都市之妙手圣医帝少宠上瘾:老公,别心急爱情公寓之万界最强队伍我的七个姐姐绝色倾城帝国强宠:娇妻已预定
趣趣阁搜藏榜:直播算卦:团宠真千金竟是玄学大佬灵识之作极品闲医欲爱重生:总裁的命定前妻极品小村民奥特曼之未来食物链顶端的猛兽乡里人鲜肉殿下:再贱萌妃致命婚姻:遭遇冷血大亨!草根选调生被离婚穷奶爸,带娃从美食店开始第一夫人:我家先生超凶的化工研究院锁定陆海夫妇这对CP盛世豪恋:权少的心尖独宠离婚后成了满级战神三好大魔王[穿越X重生]狗血那么近站住你马甲掉了坐公交车游遍全中国非宠不可:傲娇医妻别反抗御兽无限红词条,刚出新区碾万族无敌神婿男神我可以住你家吗都市:守护龙脉十年,下山即无敌身为男人的我女团出道,我火爆了六零:饥荒年当伙夫,社员都被馋哭了中式恐怖不行?纸人抬棺送走鹰酱重生之苦尽甘来无敌最俊朗新书被虐后冷心娇妻重生了萌娃带我去穿越抖音神豪:直播打赏一万亿老刑警重生,谁敢不服?枭宠毒妃:第一小狂妻海贼:无敌从僵尸军团开始替嫁后天降巨富老公都市之妙手圣医帝少宠上瘾:老公,别心急爱情公寓之万界最强队伍我的七个姐姐绝色倾城帝国强宠:娇妻已预定一胎双宝:妈咪跑不掉老婆别跑:总裁的代嫁妻签到:直播科技差点被曝光修真妖孽混都市战神探束手就擎,总裁老公请绕道!末日降临:以强化称霸穿书八零成了五个大佬的后妈
趣趣阁最新小说:在梦中疯狂捞钱皆可修仙东京:太太,我可是正经巫女完美人生还是日常?纳尼?相亲对象竟然是我大债主?灵气复苏开局无敌的我只想当保安诸神来犯,我在现代重演神话抗战:我的司令官之路灯芯界谍战:我能用不同的身份搞暗杀无疆异世之异能世界才18岁!你就速通了高武?留声岁月解释不清了:每次斩神都有我穿越卡牌世界,我成了女寝楼管无敌一分购:从屌丝到超级神豪全球都市传说录:神秘与超自然我得到了一个系统乡村荒唐往事蛊惑四蛊带着婚书出岛,豪门老婆急慌了游戏主播的盗墓传奇终极一班:重生成雷克斯别猜了,你们都是我的卧底乡村里的女人蓝星娱二代的觉醒之路阴阳茅术消失三年,青梅校花疯狂倒追我神明复苏,我被元始天尊内定了?校园绝品医王反派:开局青梅试探我,一把戳穿你这召唤师!批量召唤大罗金仙?后台很硬王大叔的幸福情缘意识进化:摸鱼创造神级文明艾尔登法环,恋爱模拟?人人都在贷款修仙?我偏不!高层之塔笑疯了!我怪物眷属全是巨龙高武:从加点开始成为宇宙最强风水少年,命途奇旅2012就有系统,随便赚钱剑御九霄:昆仑秘境传黑佬大重生小警察,系统急了赘婿被嫌弃,哪知他体内住着神仙亮剑:做人得有追求啊!绝世神婿仙道续缘:这次好好爱她现实唯唯诺诺,异界我重拳出击躯勇征途